

Goals

- Understand goals of entity authentication
- Understand strength and limitations of entity authentication protocols including passwords
- Understand subtle problems when entity authentication protocols are deployed in practice

Identification

- the problem
- passwords
- challenge response with symmetric key and MAC (symmetric tokens)
- challenge response with public key (signatures, ZK)
- biometry

Improving password security

- Apply the function f "x" times to the password (iteratively)
 - if x = 100 million, testing a password guess takes a few seconds
 - need to increase x with time (Moore's law)
 - Examples: PBKDF2 (Password-Based Key Derivation Function 2), scrypt, bcrypt
- · Disadvantage: one cannot use the same hashed password file on a faster server and on an embedded device with an 8-bit microprocessor
 - need to use different values of x depending on the computational power of the machine

- Solution: store key K on magstripe, USB key, hard disk
- · Stops guessing attacks

But this does not solve the other problems related to passwords And now you identify the card, not the user....

Possibility of replay: liveliness is missing

Improvement: Static Data Authentication

- Replace K by a signature of a third party CA (Certification Authority) on Alice's name: SigSK_{CA} (Alice) = special certificate
- Advantage: can be verified using a public string PK_{CA}
- Advantage: can only be generated by CA
- Disadvantage: signature = 40..128 bytes
- Disadvantage: can still be copied/intercepted

Possibility of replay: liveliness is missing

ZK: Fiat-Shamir • zero knowledge: Bob learns nothing about Alice's secret • e=0: B sees r and r² • e=1: B sees r² (from r² s_A² = r² . y_A) and r s_A - r . s_A is a Vernam encryption of s_A: statistically independent of s_A • Hence B only sees 2 random squares mod n, which he could have produced himself (yet he is convinced that he has spoken to Alice!) • in practice: more iterations (20...40) for better security (1/2²⁰ ...1/2⁴⁰)

	Overview Identification Protocols										
		Guess	Eavesdrop channel (liveliness)	Impersonation by Bob	Secret info for Bob	Security					
	Password	-	-	-	-	1					
	Magstripe (SK)	+	-	-	-	2					
	Magstripe (PK)	+	-	-	+	3					
	Dynamic password	+	+	-	-	4					
	Smart card (SK)	+	+	-	-	4					
	Smart Card (PK)	+	+	+	+	5					

Entity authentication in practice Phishing – mutual authentication Forward credentials - biometry Interrupt after initial authentication – authenticated key establishment Mafia fraud – distance bounding Protocol errors – check that local device authentication is linked to entity authentication protocol (example: EMV)

Fingerprint (2)

- Small sensor
- Small template (100 bytes)
- Commercially available
- Optical/thermical/capacitive
- Liveness detection
- Problems for some ethnic groups and some professions
- Connotation with crime

Hand geometry

- Flexible performance tuning
- Mostly 3D geometry
- Example: 1996 Olympics

Voice recognition

- Speech processing technology well developed
- Can be used at a distance
- Can use microphone of our gsm
- But tools to spoof exist as well
- Typical applications: complement PIN for mobile or domotica

Iris Scan

- No contact and fast
- Conventional CCD camera
- 200 parameters
- Template: 512 bytes
- All etnic groups
- Reveals health status

Retina scan

- Stable and unique pattern of blood vessels
- Invasive
- High security

Manual signature

- · Measure distance, speed, accelerations, pressure
- Familiar
- · Easy to use
- · Template needs continuous update
- Technology not fully mature

Facial recognition • User friendly • No cooperation needed • Reliability limited Robustness issues - Lighting conditions - Glasses/hair/beard/...

	Comparison									
Feature	Uniqueness	Permanent	Performance	Acceptability	Spoofing					
Facial	Low	Average	Low	High	Low					
Fingerprint	High	High	High??	Average	High??					
Hand geometry	Average	Average	Average	Average	Average					
Iris	High	High	High	Low	High					
Retina	High	Average	High	Low	High					
Signature	Low	Low	Low	High	Low					
Voice	Low	Low	Low	High	Low					
					45					

Biometry: pros and cons

- · Real person
- User friendly
- · Cannot be forwarded • Little effort for user

Secure implementation:

derive key in a secure way from the biometric

- · Cannot be replaced
 - Risk for physical attacks
 - Hygiene

Intrusive?

Liveliness?

• Privacy (medical)

Does not work everyone, e.g., people with disabilities Reliability

46

- .
- · No cryptographic key

Solution

- · Authenticated key agreement
- Run a mutual entity authentication protocol
- Establish a key
- Encrypt and authenticate all information exchanged using this key

Authentication with device

- E.g. smart card, secure login token
- Needs 2 stages
 - Local: user to device
 - Device to rest of the world
- Are these 2 stages connected properly?

