

Goals

- Understand goals of entity authentication
- Understand strength and limitations of entity authentication protocols including passwords
- Understand subtle problems when entity authentication protocols are deployed in practice

Identification

- the problem
- passwords
- challenge response with symmetric key and MAC (symmetric tokens)
- challenge response with public key (signatures, ZK)
- biometry

Entity authentication is based on one or more of the following elements:

- what someone knows
- password, PIN
ert5^r\$\#890y
- what someone has
- magstripe card, smart card
- what someone is (biometrics)
- fingerprint, retina, hand shape,...
- how someone does something
- manual signature, typing pattern
- where someone is
- dialback, location based services (GSM, Galileo)

Entity authentication with passwords

-Eve can guess the password
-Eve can listen to the channel and learn Alice's password -Bob needs to know Alice's secret
-Bob needs to store Alice's secret in a secure way Possibility of replay: liveliness is missing

Password entropy: effective key length

Problem: passwords from dictionaries

Improving password security

- Apply the function f " x " times to the password (iteratively)
- if $\mathrm{x}=100$ million, testing a password guess takes a few seconds
- need to increase x with time (Moore's law)
- Examples: PBKDF2 (Password-Based Key Derivation Function 2), scrypt, bcrypt
- Disadvantage: one cannot use the same hashed password file on a faster server and on an embedded device with an 8-bit microprocessor
- need to use different values of x depending on the computational power of the machine

Problem: human memory is limited

- Solution: store key K on magstripe, USB key, hard disk
- Stops guessing attacks

But this does not solve the other problems related to passwords And now you identify the card, not the user....

Possibility of replay: liveliness is missing

- Mathematical proof that Bob only learns that he is talking to Alice (1 bit of information)
- Bob cannot use this information to convince a third party that he is/was talking to Alice
pary mat ne is/was raiking to Alice

Entity authentication with public key token

- Eavesdropping no longer effective
- Bob no longer needs a secret - only PK_{A}

ZK definitions

- complete: if Alice knows the secret, she can carry outthe protocol successfully
- sound: Eve (who wants to impersonate Alice) can only convinceBob with a very small probability that she is Alice;
- zero knowledge: even a dishonest Bob does not learn anything except for 1 bit (he is talking to Alice); he could have produced himself all the other information he obtains during the protocol.

ZK: Fiat-Shamir (1986)

- central RSA modulus n
- per user:
- identity I_{A}
$-\operatorname{secret}$ key $\mathrm{s}_{\mathrm{A}}\left(0<\mathrm{s}_{\mathrm{A}}<\mathrm{n}\right)$
- public key $\mathrm{y}_{\mathrm{A}}=\mathrm{s}_{\mathrm{A}}{ }^{2} \bmod \mathrm{n}$
- facts from number theory:
- if one knows the factorization of n , it is easy to compute the square roots modulo n (if they exist);
- if one can compute square roots modulo n , it is easy to factor n

ZK: Fiat-Shamir

- zero knowledge: Bob learns nothing about Alice's secret
- $\mathrm{e}=0$: B sees r and r^{2}
- $\mathrm{e}=1$: B sees $\mathrm{r}^{2}\left(\right.$ from $\left.^{2} \mathrm{~s}_{\mathrm{A}}^{2}=\mathrm{r}^{2} \cdot \mathrm{y}_{\mathrm{A}}\right)$ and r_{A}
$-r . s_{A}$ is a Vernam encryption of s_{A} : statistically independent of S_{A}
- Hence B only sees 2 random squares mod n, which he could have produced himself (yet he is convinced that he has spoken to Alice!)
- in practice: more iterations (20...40) for better security $\left(1 / 2^{20} \ldots 1 / 2^{40}\right)$
Overview Identification Protocols

	Guess	Eavesdrop channel (liveliness)	Impersonation by Bob	Secret info for Bob	Security
Password	-	-	-	-	$\mathbf{1}$
Magstripe (SK)	+	-	-	-	$\mathbf{2}$
Magstripe (PK)	+	-	-	+	$\mathbf{3}$
Dynamic password	+	+	-	-	$\mathbf{4}$
Smart card (SK)	+	+	-	-	$\mathbf{4}$
Smart Card (PK)	+	+	+	+	$\mathbf{5}$

- Eavesdropping no longer effective
- Bob still needs secret key P
- Exhaustive search for P is easy based on a single transcript

Entity authentication in practice

- Phishing - mutual authentication
- Forward credentials - biometry
- Interrupt after initial authentication authenticated key establishment
- Mafia fraud - distance bounding
- Protocol errors - check that local device authentication is linked to entity authentication protocol (example: EMV)

Mutual authentication

- Phishing is impersonating of the verifier (e.g. the bank)
- Most applications need entity authentication in two directions
- !! This is not complete the same as 2 parallel unilateral protocols for entity authentication

2 stage authentication

- Local: user to device
- Device to rest of the world

Biometry

- Based on our unique features
- Identification or verification
- Is this Alice?
- Check against watchlist
- Has this person ever registered in the system?

Robustness/performance

- Performance evaluation
- False Acceptance Ratio or False Match Rate
- False Rejection Ratio or False Non-Match Rate
- Application dependent

Fingerprint

- Used for PC/laptop access
- Widely available
- Reliable and inexpensive
- Simple interface

minutiae

Fingerprint (2)

- Small sensor
- Small template (100 bytes)
- Commercially available
- Optical/thermical/capacitive
- Liveness detection
- Problems for some ethnic groups and some professions
- Connotation with crime

Fingerprint (3): gummy fingers

Voice recognition

- Speech processing technology well developed
- Can be used at a distance
- Can use microphone of our gsm
- But tools to spoof exist as well
- Typical applications: complement PIN for mobile or domotica
- Flexible performance tuning
- Mostly 3D geometry
- Example: 1996 Olympics

Iris Scan

- No contact and fast
- Conventional CCD camera
- 200 parameters
- Template: 512 bytes
- All etnic groups
- Reveals health status

Retina scan

- Stable and unique pattern of blood vessels
- Invasive
- High security

Manual signature

- Measure distance, speed, accelerations, pressure
- Familiar
- Easy to use
- Template needs continuous update
- Technology not fully mature

Comparison

CompariSOn					
Feature Uniqueness Permanent Performance Acceptability Spoofing Facial Low Average Low High Low Fingerprint High High High?? Average High?? Hand geometry Average Average Average Average Average Iris High High High Low High Retina High Average High Low High Signature Low Low Low High Low Voice Low Low Low High Low 					

Facial recognition

- User friendly
- No cooperation needed
- Reliability limited
- Robustness issues
- Lighting conditions
- Glasses/hair/beard/...

Biometry: pros and cons

- Real person
- Privacy (medical)
- User friendly
- Intrusive?
- Cannot be forwarded
- Liveliness?
- Little effort for user
- Cannot be replaced
- Risk for physical attacks
- Hygiene
- Does not work everyone, e.g., people with disabilities
- Reliability
- Secure implementation:
derive key in a secure way - No cryptographic key from the biometric

Solution

- Authenticated key agreement
- Run a mutual entity authentication protocol
- Establish a key
- Encrypt and authenticate all information exchanged using this key

Location-based authentication

- Distance bounding: try to prove that you are physically close to the verifier
- Other uses of "location"
- Dial-back: can be defeated using fake dial tone
- IP addresses and MAC addresses can be spoofed
- Mobile/wireless communications: operator knows access point, but how to convince others?
- Trusted GPS: Galileo?

Authentication with device

- E.g. smart card, secure login token
- Needs 2 stages
- Local: user to device
- Device to rest of the world
- Are these 2 stages connected properly?

Guidelines

NIST Special Publication 800-63 Version 1.0.2 (2006):
Electronic Authentication Guideline: identifies four levels of assurance
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf

See http://csrc.nist.gov/publications/PubsSPs.html
for about 120 Special Publications (800 Series) from NIST on computer security and cryptography

